MATH 215 WINTER 2026
Homework Set 1: §12.2 - 12,5

Only some of the questions on this and other homework sets will be graded.
Due January 20, no later than 11:59pm, submitted through Gradescope.

You may work on these problems in groups (in fact, this is encouraged!), but you must submit your own set
of solutions. Please neatly show your work!

Question 1: Suppose v and u are nonzero vectors. In class, we defined the projection of v onto u. We
define the orthogonal projection as the part of v that does not lie along u:

orthy,v = v — proj, v,
(a) Using the general formula for proj,v, verify that orth,v is orthogonal to u. (For this reason, we

say that v = orth,v + proj,v is an orthogonal decomposition of v.)

(b) In R?, compute the vectors proj, v and orth,v for u = (1, —2) and v = (3, 1). Sketch and clearly
label u, v, proj,v, and orth,v.

(¢) Compute proj, v and orth,v for u = (2, —6, —3) and v = (8, 4, —6).

Question 2:
(a) Describe all vectors in R? orthogonal to v = (3, —4).
(b) Describe all vectors in R? orthogonal to both v = (1, 4, 2) and u = (2, 0, 1).
(c)
(d) Show that there is no vector v such that v x (5, =2, 6) = (1, —1, —1).
)

(e) Describe all vectors in R* orthogonal to v = (1,0,—1,0) and u = (1,—1,0,1). Hint: The cross
product will not help you with this part.

¢) Find a vector v such that v x (5, —2, 6) = (2, 2, —1). Is such a vector unique?

Question 3: Consider the lines
ri(t) =(1, -1, 2) + ¢ (-1, 4, 3) and ro(s) = (-1, =3, 1) +s(1, 4, —2)

(a) Show that the lines are skew, that is, they are not parallel and they do not intersect (thus they are
not contained in a plane).

(b) Find the points P on r; and @ on rs such that the distance |PQ| is minimal.

(c) Find the equations of all planes parallel to the plane 8x + 3y — 5z = 2 and 3 units away from
it. Hint: Think about what it means for two planes to be parallel, and how to find the distance
between two planes.

Question 4: Consider the planes P;, P5, and Pj, each with normal vector n;, ny, and ng, respectively.
Assume that none of the planes are parallel. Let £;; be the line of intersection of the plane P; with P;.
Is it possible for £12, fo3, and {13 to form a triangle? (Put another way, each pair of lines intersects
precisely once.) If so, provide an example. If not, provide a convincing argument.



Question 5: Consider the cube pictured below:

The sides of the cube have length six. The points p and g are at the midpoints of their respective edges.
Let T be the triangle with vertices a, p, and q.

(a) What is the area of T

(b) If 6 is the smallest angle of T', what is cos 6?

(¢) The triangle T lives in a plane. What angle does this plane make with the bottom face of the cube?

Question 6: In section 12.5 of the book, we discovered that a line can generically be written in the form
é(t) = <f£0, Yo, ZO> +tv,

where the point (zg,yo, z0) is a known point on the line and v is the direction vector of the line. In this
way, we can view ¢ as your position on the line: in units of |v|, it measures your distance from a known
reference point.

A similar statement can be made for planes: Given any plane containing the point (xg, Yo, 20), every
other point on the plane can be written as

<x07 Yo, ZO> + tvl + svg

where v; and vy are two non-parallel vectors that lie in the plane, and s and ¢ are free parameters. (One
might even say that s and ¢ are a set of coordinates describing our position in the plane. This is what we
mean when we say a plane is a two dimensional object—we need two parameters to navigate the space.)

Let’s make this concrete. Consider the plane x+y—4z = 2, and take as our reference point (g, yo, 20) =
(1,1,0). To make the calculation easier, we will take v; and vs to be orthogonal unit vectors.
(a) Let vq = <%, —%7 O>. Find a vy such that the following four conditions hold: (i) |va| = 1, (ii)
vy - v =0, (iii) vy lies in the plane z + y — 4z = 2, and (iv) all components of vy are positive.
(b) Starting at (1, 1,0), navigate to an arbitrary point (a, b, c) that lies on the plane moving only along
the directions of v and vs.

Extra Credit: Let’s apply the same basic idea from problem 1 to a slightly more general setting. Given
an arbitrary set of vectors {vi}?zl, we can construct a set of mutually orthogonal vectors from them,
denoted {u;};_,. Let’s illustrate how in the steps below.

(a) Begin with the vectors vi = (1, 1, 1), vo = (2, 2, 4) and vs = (-2, 2, —1). Just so we have it for
later on, find the plane containing vy, va, and the point (0,0, 0).

(b) Let u; = vy. Define uy to be the orthogonal projection of va onto uy, and compute this quantity.

(¢) We would now like to find a ug such that us is orthogonal to both u; and uy. For three dimensional
vectors we have several ways of doing this, but let’s try one specific way by trying to mimic the
definition of the orthogonal projection, which will generalize to higher dimensions. Compute the
projection of vs onto u; and the projection of vs onto uy. Subtract both of these projections from
vs, and denote the resulting vector by us.

(d) Verify directly that u;, us, and ugz are all mutually pairwise orthogonal.



(e) Using your answer from part (a), can you find a relationship between the plane containing v; and
vy and the vector uz? Explain.

(f) Now repeat and extend parts (b) through (d) for the following four vectors:
V1= <15 Oa 17 O> Va2 = <_1a la 07 O> V3 = <27 07 47 1> V4 = <Oa 37 27 _4>

At the end of this part you should have four vectors u;, us, uz, and uy with the property that
ui-uj:Oifi;éj.

(g) Why didn’t we have you use the cross product in part (c) of this problem? Explain.



