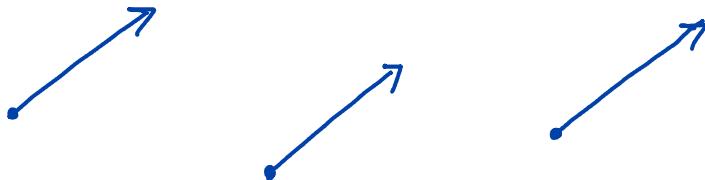


2 Section 12.2: Vectors

To represent objects in 2D, 3D, and even higher dimension spaces, we introduce **vectors**.

- **Definition:** A vector \vec{v} is an object with a magnitude and a direction.



- **Unit vector:** A vector \vec{v} is said to be a unit vector if its magnitude is 1.

Example: Sketch a vector \vec{u} in \mathbb{R}^2 with start point $(0, 2)$ and end point $(3, 5)$.

Find the magnitude and describe the direction of the vector \vec{u} .

The angle formed by \vec{u} and the horizontal line satisfies $\tan(\theta) = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3}{3} = 1$ so, $\theta = \frac{\pi}{4}$ or 45°

$$\|\vec{u}\| = \text{Distance between } (0, 2) \text{ and } (3, 5)$$

$$= \sqrt{(3-0)^2 + (5-2)^2} = \sqrt{9+9} = 3\sqrt{2}$$

- **Component form of a vector** Every 2-D (resp. 3-D) vector \vec{v} can be represented as a point in the coordinate system:

$$\vec{v} = \langle x, y \rangle \text{ (resp. } \vec{v} = \langle x, y, z \rangle).$$

Such representation is called the component form of the vector.

How to find the component for of a vector using its start and end point?

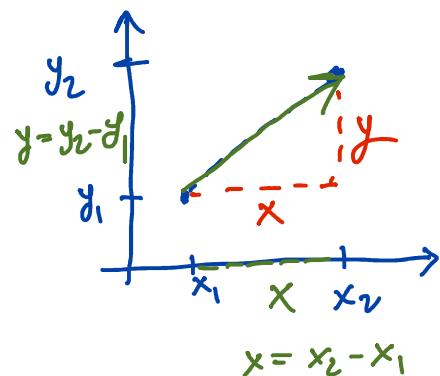
I can define \vec{v} by

$$\vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} \text{ where}$$

$$x = x_2 - x_1$$

and

$$y = y_2 - y_1$$



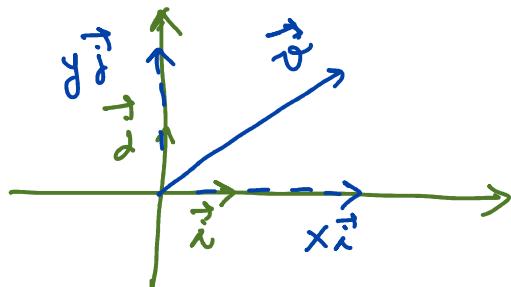
$$\vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} \text{ in } \mathbb{R}^2, \text{ and } \vec{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ in } \mathbb{R}^3$$

We can also write

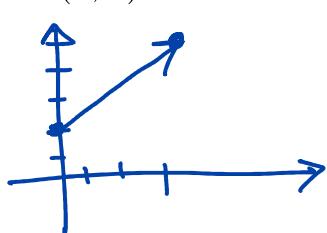
$$\vec{v} = x\vec{i} + y\vec{j} \text{ (resp. } \vec{v} = x\vec{i} + y\vec{j} + z\vec{k}),$$

where

$\vec{i} = \langle 1, 0 \rangle$ and $\vec{j} = \langle 0, 1 \rangle$ (resp. $\vec{i} = \langle 1, 0, 0 \rangle$, $\vec{j} = \langle 0, 1, 0 \rangle$, and $\vec{k} = \langle 0, 0, 1 \rangle$)



Example: Consider again the vector \vec{u} with start point $(0, 2)$ and end point $(3, 5)$. Find its component form.



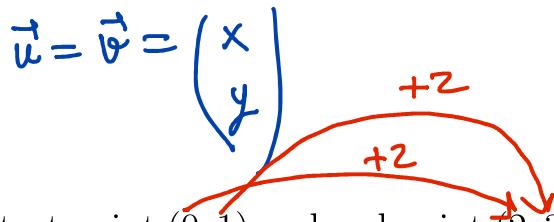
Then $\vec{u} = \begin{pmatrix} 3-0 \\ 5-2 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$

or $\vec{u} = 3\vec{i} + 3\vec{j}$.

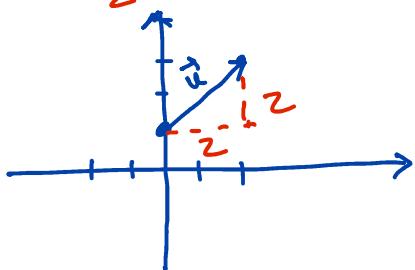
- In general, let $P = (x_1, y_1, z_1)$ and $Q = (x_2, y_2, z_2)$. We denote by \overrightarrow{PQ} the vector with start point P and end point Q . Find the component form of \overrightarrow{PQ} .

$$\overrightarrow{PQ} = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{pmatrix}$$

- Equivalent vectors:** Two vectors \vec{u} and \vec{v} are **equivalent** if their component forms are identical. This is equivalent to say that the vector have the same magnitude and direction.



→ **Example:** Consider the vector \vec{u} with start point $(0, 1)$ and end point $(2, 3)$. Give a vector \vec{v} with start point $(-2, 5)$ and equivalent to \vec{u} .

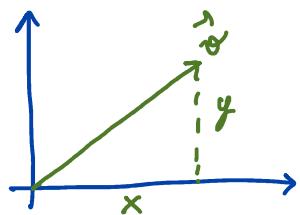


\vec{v} must end at $(0, 7)$

Given the component form of a vector, how to find its magnitude?

Let $\vec{v} = \langle x, y, z \rangle = x\vec{i} + y\vec{j} + z\vec{k}$. so, $\|\vec{v}\| = \sqrt{x^2 + y^2 + z^2}$

(2-D picture)



- Example: Consider the vector $v = 2\vec{i} - \vec{j} - 2\vec{k}$.

- Find the unit vector \vec{u} in the direction of \vec{v} .

$$\vec{u} = \frac{\vec{v}}{\|\vec{v}\|} \text{. where } \|\vec{v}\| = \sqrt{2^2 + (-1)^2 + (-2)^2} = \sqrt{4+1+4} = \sqrt{9} = 3$$

so,
$$\boxed{\vec{u} = \frac{2}{3}\vec{i} - \frac{1}{3}\vec{j} - \frac{2}{3}\vec{k}}$$

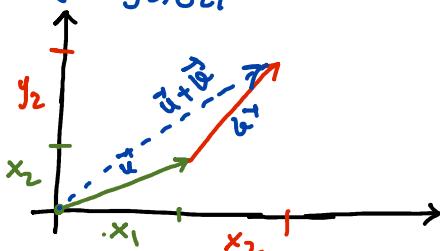
- Find the vector \vec{w} of length 7 in the **opposite** direction of \vec{v} .

$$\vec{w} = (-7)\vec{u} \text{. } \vec{w} = -\frac{14}{3}\vec{i} + \frac{7}{3}\vec{j} - \frac{14}{3}\vec{k}$$

- Adding two vectors

Let $\vec{u} = \langle x_1, y_1, z_1 \rangle$, and $\vec{v} = \langle x_2, y_2, z_2 \rangle$. Then, $\vec{u} + \vec{v} = \langle x_1 + x_2, y_1 + y_2, z_1 + z_2 \rangle$.

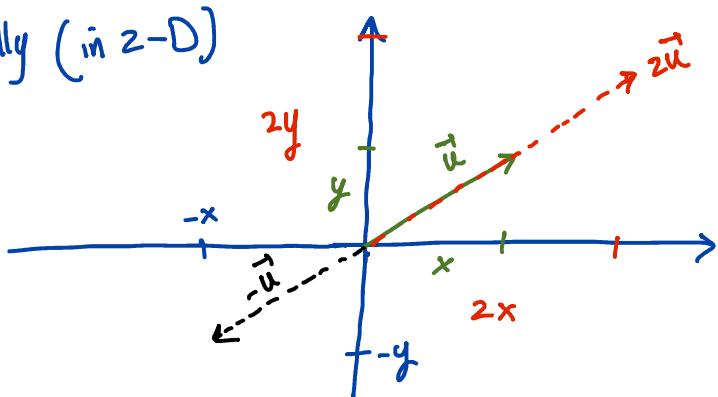
Graphically (in 2-D):



- Multiplying a vector by a scalar

Let $\vec{u} = \langle x, y, z \rangle$. Then $a\vec{u} = \langle ax, ay, az \rangle$

Graphically (in 2-D)



- Linear combination of vectors

If $\vec{u} = \langle x_1, y_1, z_1 \rangle$, $\vec{v} = \langle x_2, y_2, z_2 \rangle$, and a and b are scalars,

then $a\vec{u} + b\vec{v} = \langle ax_1 + bx_2, ay_1 + by_2, az_1 + bz_2 \rangle$

- Properties of vectors addition and multiplying by a scalar (here a, b are scalars, and $\vec{u}, \vec{v}, \vec{w}$ are vectors)

- $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- $\vec{u} + \vec{0} = \vec{u}$
- $\vec{u} + -\vec{u} = \vec{0}$
- $a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$
- $(a + b)\vec{u} = a\vec{u} + b\vec{u}$
- $(ab)\vec{u} = a(b\vec{u})$
- $1\vec{u} = \vec{u}$

(Try examples at home).