2 Section 12.2: Vectors

To represent objects in 2D, 3D, and even higher dimension spaces, we introduce
vectors.

e Definition: A vector ¢ is an object with a magnitude and a direction.

e Unit vector: A vector v is said to be a unit vector if its magnitude is 1
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Example: Sketch a vector @ in R? with start point (0, 2) and end point (3, 5).
Find the magnitude and describe the direction of the vector .
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e Component form of a very 2-D (resp. 3-D) vector ¢ can be

represented as a point in the coordinate system:
U=<ux,y> (resp. U =<uz,y,z>).

Such representation is called the component form of the vector.

How to find the component for of a vector using its start and end
point?
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We can also write } v 3

U= x;@yj (resp. T = i +1yj + zl;),
where
i=<1,0>and j =<0,1> (resp. i =< 1,0,0 >, =<0,1,0 >, and k =< 0,0,1 > )
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Example: Consider again the vector @ with start point (0, 2) and end point
(3,5). Find its component form.
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e In general, let P = (z1,91,21) and Q = (z9,y2,22). We denote by ]@ the
vector with start point P and end point (). Find the component form of PQ).
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e Equivalent vectors: Two vectors @ and v are equivalent if their component
forms are identical. This is equivalent to say that the vector have the same
magnitude and direction. T
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- Example: Consider the vector ¥ with start point (0, 1) and end point
v ivg vector ¢ with start point (—2,5) and equivalent to .
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Given the component form of a vector, how to find its magnitude?
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e Example: Consider the vector v = 2i — j — 2k.

m Find the unit vector ¢ in the direction of v.
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m Find the vector w of length 7 in the opposite direction of .
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¢ Adding two vectors
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e Multiplying a vector by a scalar
let - <977 Thea o= ax agy
Graphically (i 2-D) A -




e Linear combination of vectors
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e Properties of vectors addition and multiplying by a scalar (here a,b

are scalars, and u, U, w are vectors)
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m U+ U =U+1U

m (U+ V) + W =u+ (V+ W)
ni+0=1
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ma(d+ ) =au+ av



