

4 Section 12.4: The Cross Product

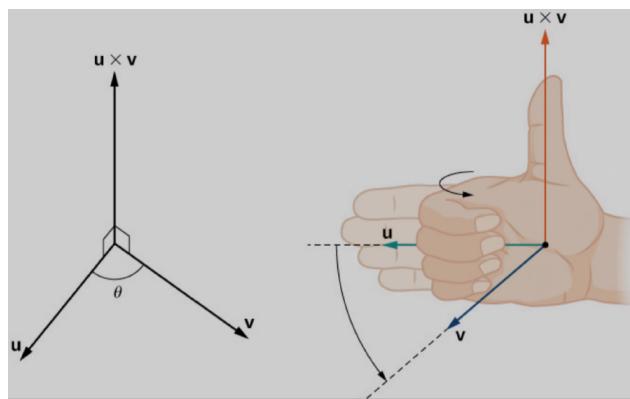
- **Definition:** Let $\vec{u} = (a, b, c)$ and $\vec{v} = (d, e, f)$ be two vectors. The **cross product** $\vec{u} \times \vec{v}$ is a **vector** defined by

$$\vec{u} \times \vec{v} = \langle bf - ce, -(af - cd), ae - bd \rangle$$

- In matrix determinant notation:

- **Note:** *There is no cross product in 2-D. But if you wish to find the cross product of two vectors in \mathbb{R}^2 , then you can assume that the z component is zero.*

- **Direction of the cross product vector: Right Hand Rule**



- **Algebraic properties of the cross product**

- $\vec{u} \times \vec{u} = \vec{0}$
- $\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$
- $\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$
- $(r\vec{u}) \times \vec{v} = r(\vec{u} \times \vec{v})$
- $\vec{u} \times \vec{0} = \vec{0}$

What does the cross product say about the relationship between two given vectors?

- **Theorem:** The cross product $\vec{u} \times \vec{v}$ is orthogonal to both of the vectors \vec{u} and \vec{v}

Why? try finding a dot product...

- **Theorem:** Given two vectors \vec{u} and \vec{v} , Let θ be the angle between them ($0 \leq \theta \leq \pi$). Then

$$\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \sin(\theta)$$

and

How can we prove this?

Hint: by direct computation, you can find: $\|\vec{u} \times \vec{v}\|^2 = \|\vec{u}\|^2 \|\vec{v}\|^2 - (\vec{u} \cdot \vec{v})^2$, then continue from there...

- **Corollary:** Two non-zero vectors \vec{u} and \vec{v} are parallel if and only if $\vec{u} \times \vec{v} = 0$

Interpretation:

- **Example:** Find two unit vectors which are orthogonal to $\vec{u} = (-1, 0, 3)$.
- **Finding the area of a parallelogram using cross product.**