

5 Section 12.5: Equations of lines and planes

- In \mathbb{R}^2 , how do we describe a line that passes by the two points $(1, 1)$ and $(2, 4)$?

 - Relation between y and x :

$$\text{slope} = \frac{3}{1} = 3 \quad y - 1 = 3(x - 1)$$

$$y = 3x - 2$$

 - Vector notation:

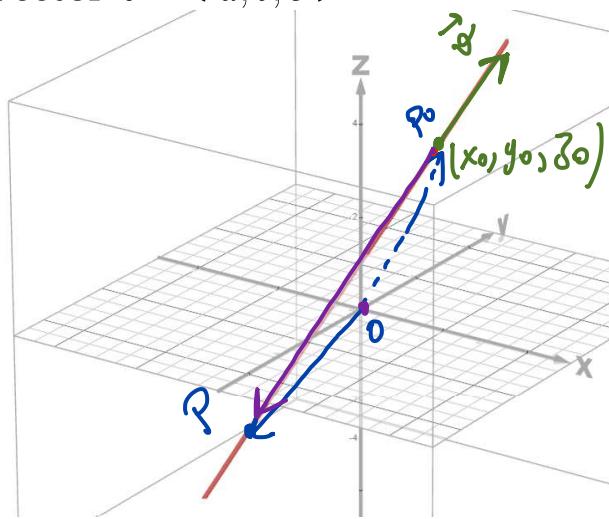
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 3 \end{pmatrix} t \quad \text{or } \langle x, y \rangle = \langle 1, 1 \rangle + \langle 1, 3 \rangle t$$

 - Parametric equations:

$$x_{(t)} = 1 + t, \quad y_{(t)} = 1 + 3t$$

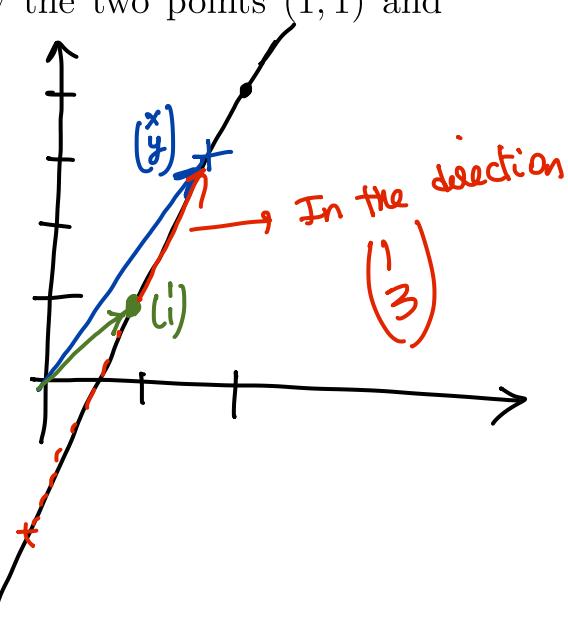
$$\text{or } L_{(t)} = \langle 1 + t, 1 + 3t \rangle$$

- Equations of a line in \mathbb{R}^3 that passes by a point $P = (x_0, y_0, z_0)$ and parallel to the vector $\vec{v} = \langle a, b, c \rangle$



 - Vector form:

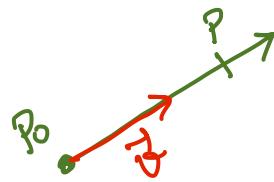
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + t \vec{v} \quad \text{so, } \vec{OP} = \vec{OP_0} + t \vec{v}$$



■ Parametric form:

$$x_{(t)} = x_0 + ta, \quad y_{(t)} = y_0 + tb, \quad z_{(t)} = z_0 + tc$$

or $\langle x_0 + ta, y_0 + tb, z_0 + tc \rangle$



■ Symmetric form:

$$t = \frac{x - x_0}{a} \quad \text{so, } \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

$$t = \frac{y - y_0}{b}$$

$$t = \frac{z - z_0}{c}$$

what does this say? Note that $\begin{pmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{pmatrix} = \overrightarrow{PP_0}$

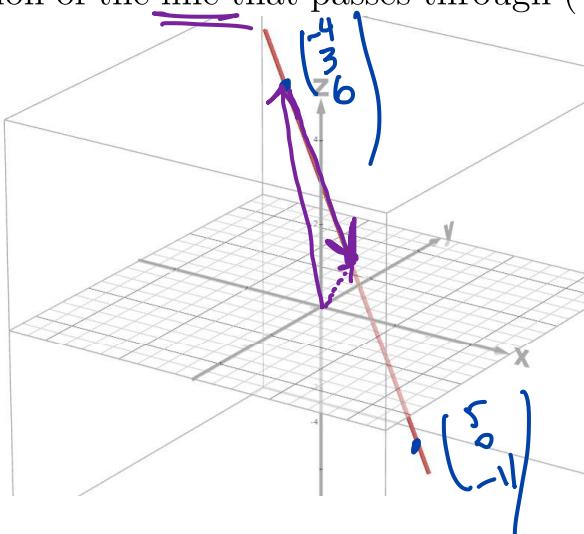
■ Examples:

so, $\overrightarrow{PP_0}$ and $\overrightarrow{P_0P}$ are parallel.

■ Find an equation of the line that passes through $(-4, 3, 6)$ and $(1, 3, -5)$.

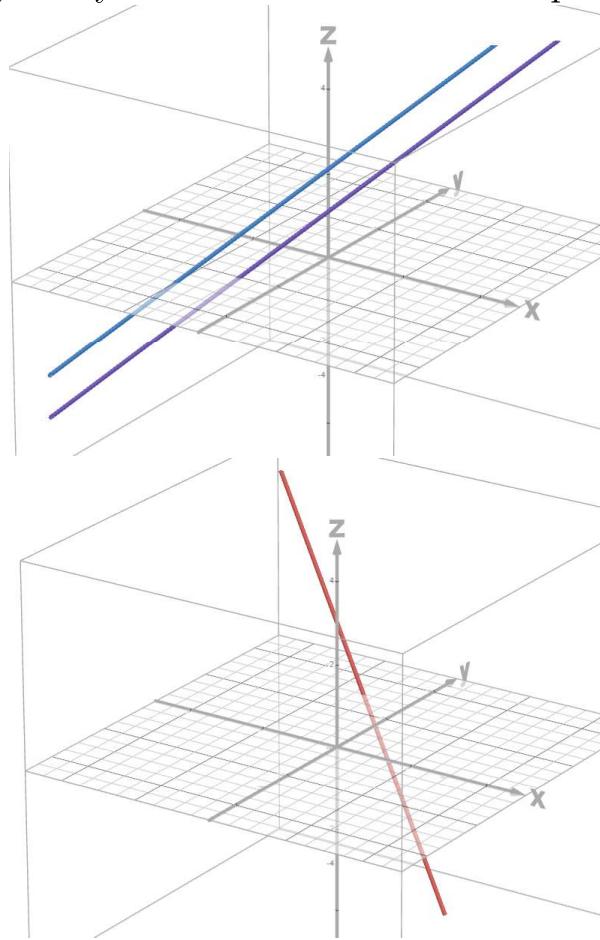
$$\begin{pmatrix} -4 \\ 3 \\ 6 \end{pmatrix} + t \begin{pmatrix} 5 \\ 0 \\ -11 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

✓



■ Find an equation of the line segment between $(-4, 3, 6)$ and $(1, 3, -5)$.

- What would you say about two lines that have parallel direction vectors?



- * In the case that the two lines have a common point
- * In the case that the two lines do not have any common point

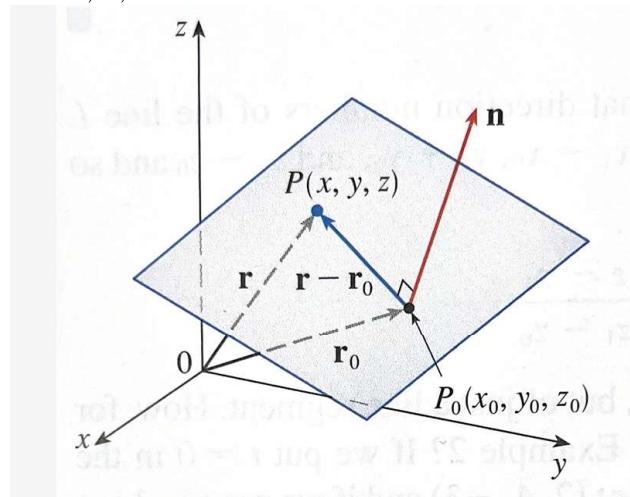
- **Def:** Given a plane, a **normal vector** is a vector orthogonal to every line in the plane.

- **Examples:**

- Find normal vectors for the xy -plane, xz -plane, and yz -plane.

- Describe the set of all the vectors orthogonal to the vector $\langle -1, 3, 2 \rangle$.

- The equation of a **plane** which contains the point $p = (x_0, y_0, z_0)$ and has a normal vector $\vec{n} = \langle a, b, c \rangle$ is:



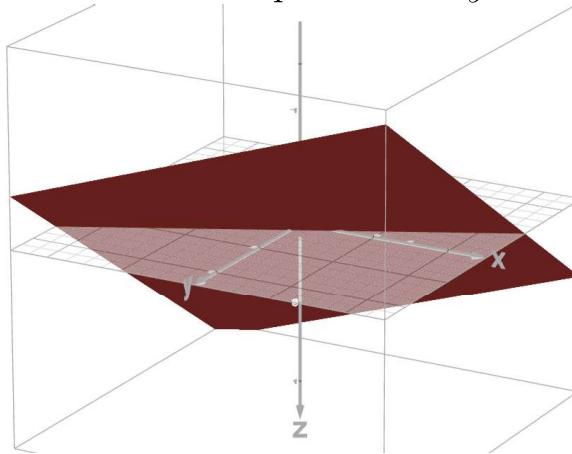
- **Vector form:**

- **Scalar form:**

- **General form:**

- **Examples:**

- Find an equation of the plane through $(0, 1, 1)$, $(1, 0, 1)$ and $(1, 1, 0)$.
- Find an equation for the line perpendicular to $3x - 2y + 2z = 8$ and which passes through $(5, 7, 1)$.
- Find the point of intersection of the line $L(t) = (2 - 2t, 3t, 1 + t)$ and the plane $x + 2y - z = 7$.
- Find the intersection of the two planes $x + 2y + 3z = 1$ and $x - y + z = 1$.



- Find the angle between the two planes $x + 2y - z = 2$ and $2x - 2y + z = 1$.
- Find the distance between the point $(4, 1, -2)$ and the line $L(t) = (1 + t, 3 - 2t, 4 - 3t)$.
- Find the distance between the point $(1, -2, 4)$ and the plane $3x + 2y + 6z = 5$.
- Find the distance between the two lines with parametric equations $L(t) = (1 + t, 1 + 6t, 2t)$ and $M(t) = (1 + 2s, 5 + 15s, -2 + 6s)$.
- Do the lines $L = (t, -t, t)$ and $M = (2t + 3, t, t + 2)$ intersect? If so, what is their intersection?