
MATH 215 WINTER 2026
Homework Set 4: Minimal Solutions

Question 1: Let f(x, y) = xe−y
2 − ye−x2

.

(a) Find the equation for the tangent plane to the graph of f at the point (2, 1).

Solution: Generally speaking, for a function of the form z = f(x, y), the tangent plane at the
point (x0, y0, z0) is given by

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

For this function, we have

fx = e−y
2

+ 2xye−x
2

fy = −2xye−y
2

− e−x
2

At the point (2, 1) we find

f(2, 1) = 2e−1 − e−4 fx(2, 1) = e−1 + 4e−4 fy(2, 1) = −4e−1 − e−4

Which gives our tangent plane approximation as

z − 2e−1 + e−4 = (e−1 + 4e−4)(x− 2)− (4e−1 + e−4)(y − 1)

(b) If one exists, find a point on the surface z = x2 − y2 that has a tangent plane parallel to the plane
found in the previous part. If one does not exist, justify why.

Solution: We need to find a point on z = f(x, y) = x2 − y2 where the normal vector of the
tangent plane is parallel to the normal vector of the tangent plane from part (a).

For the function f(x, y) = x2 − y2, the partial derivatives are simple to find as fx = 2x and
fy = −2y. The tangent plane, generically for a function of this type, will have normal vector

n = 〈−fx, −fy, 1〉 = 〈−2x, −2y, 1〉 ,

which, for this example, gives

n =
〈
e−1 + 4e−4, −4e−1 − e−4, 1

〉
Then we see we must have

x =
1

2e
+

2

e4
, y =

2

e
+

1

2e4
, z =

(
1

2e
+

2

e4

)2

−
(

2

e
+

1

2e4

)2

= −15(e6 − 1)

4e8



Question 2: A function of two variables u = u(x, t) is said to satisfy the wave equation in one space
dimension if it satisfies the identity utt = c2uxx. Here c > 0 is a constant denoting the speed of
propagation of the wave.

(a) Take f and g to be two twice-differentiable functions of one variable. Show that

u(x, t) = f(x− ct) + g(x+ ct)

is a solution of the wave equation.

Solution: The time derivatives come out to be

ut = −cf ′(x− ct) + cg′(x+ ct), utt = c2f ′′(x− ct) + c2g′′(x+ ct)

and the spatial derivatives come out to be

ux = f ′(x− ct) + g′(x+ ct), uxx = f ′′(x− ct) + g′′(x+ ct)

We can see simply enough that utt = c2uxx, as expected.

(b) One can show (but you don’t have to) that all solutions of the one dimensional wave equation are
of the above form for some f and g. Use this fact to find the solution of the wave equation that
satisfies the initial conditions

u(x, 0) = 0, ut(x, 0) = xe−x
2/2

Solution: The initial condition on the function implies

u(x, 0) = 0 ⇒ f(x) + g(x) = 0 ⇒ g(x) = −f(x)

Our prospective solution can then be simplied to

u(x, t) = f(x− ct)− f(x+ ct)

This has a temporal derivative of

ut = −cf ′(x− ct)− cf ′(x+ ct),

which, evaluated at t = 0, should be

ut(x, 0) = −cf ′(x)− cf ′(x) = −2cf ′(x) = xe−x
2/2

Isolating f ′(x) and integrating once we find

f ′(x) = − x

2c
e−x

2/2 ⇒ f(x) =
1

2c
e−x

2/2 +K

where K is an unknown constant of integration. (This constant is unimportant because it will
cancel out when we put this all together for u.) Putting in our solution for f , we then have

u(x, t) =
1

2c

(
e−(x−ct)

2/2 − e−(x+ct)
2/2
)



(c) Determine which, if any, of the following functions are solutions to Laplace’s equation uxx+uyy = 0:

f(x, y) =
y

a2y2 − x2
g(x, y) = e−x cos y − e−y cosx h(x, y) = ln

√
x2 + y2

Solution: There’s no trick to this one, just a lot of derivatives. Let’s get to it!

For f , the first and second derivatives are given by

fx =
2xy

(a2y2 − x2)2
fy =

−x2 − a2y2

(a2y2 − x2)2

fxx =
2a2y3 + 6x2y

(a2y2 − x2)3
fyy =

2a4y3 + 6a2x2y

(a2y2 − x2)3

The sum is

fxx + fyy =
2a2y3 + 6x2y

(a2y2 − x2)3
+

2a4y3 + 6a2x2y

(a2y2 − x2)3
=

(1 + a2)(2a2y3 + 6x2y)

(a2y2 − x2)3
6= 0

which means this function is not a solution to Laplace’s equation.

For g, the first and second derivatives are given by

gx = −e−x cos y + e−y sinx gy = −e−x sin y + e−y cosx

gxx = e−x cos y + e−y cosx gyy = −e−x cos y − e−y cosx

The sum is
gxx + gyy = e−x cos y + e−y cosx− e−x cos y − e−y cosx = 0

and so this function is a solution.

Finally, for h it is first useful to do a bit of algebra and save ourselves some hassle with the
derivatives. We notice

h(x, y) = ln
√
x2 + y2 =

1

2
ln
(
x2 + y2

)
The first and second derivatives are given by

hx =
x

x2 + y2
hy =

y

x2 + y2

hxx =
y2 − x2

(x2 + y2)2
hyy =

x2 − y2

(x2 + y2)2

The sum is

hxx + hyy =
y2 − x2

(x2 + y2)2
+

x2 − y2

(x2 + y2)2
= 0

and so this function is a solution.



Question 3:

(a) Newton’s law of universal gravitation states that the magnitude of the gravitational force F between
two objects is given by

F = G
m1m2

r2
,

where G is the gravitational constant, m1 and m2 are the masses of the two objects, and r is the
distance between the objects. Here G ≈ 6.674× 10−11m3kg−1s−2. A team of amateur astronomers
have estimated that m1 = 2× 1024 kg, m2 = 5× 1023 kg, and r = 1010 m, with a maximum relative
errorof 3% in each measurement. Use differentials to estimate the maximum relative error in the
calculated force F .

Solution: Using the chain rule (or computing the total differential, which is more or less the
same process), we find

dF =
∂F

∂m1
dm1 +

∂F

∂m2
dm2 +

∂F

∂r
dr

In order to compute the relative error, we’re going to want dF/F . Before we write that down,
though, let’s first collect our partial derivatives:

∂F

∂m1
=
Gm2

r2
∂F

∂m2
=
Gm1

r2
∂F

∂r
= −2Gm1m2

r3

Notice, then, that the terms in our relative error will have particularly nice forms:

1

F

∂F

∂m1
=

1

m1

1

F

∂F

∂m2
=

1

m2

1

F

∂F

∂r
= −2

r

The relative error is then given as

dF

F
=
dm1

m1
+
dm2

m2
− 2

dr

r

Notice each term in this sum is exactly the relative error in each of the variables. Because we
don’t know if the errors in measurement are over- or under-estimates, we need to allow for the
possibility that all of the errors could work in concert. That is,∣∣∣∣dFF

∣∣∣∣ ≤ ∣∣∣∣dm1

m1

∣∣∣∣+

∣∣∣∣dm2

m2

∣∣∣∣+

∣∣∣∣−2
dr

r

∣∣∣∣ = 3% + 3% + 2 (3%) = 12%



(b) Use differentials to approximate the number (1.98)3
(

(3.03)2 − 1
(1.01)3

)
. It may help to consider a

suitable function f(x, y, z) at a suitable point P (a, b, c).

Solution: Let our function be given by

f(x, y, z) = x3
(
y2 − 1

z3

)
at the point (2, 3, 1). The partial derivatives are given by

fx = 3x2
(
y2 − 1

z3

)
, fy = 2x3y, fz =

3x3

z4

At the point in question, our function and its partial derivatives have the values

f(2, 3, 1) = 64, fx(2, 3, 1) = 96, fy(2, 3, 1) = 48, fz(2, 3, 1) = 24

The linearization is given by

f(x, y, z) ≈ f(2, 3, 1) + fx(2, 3, 1) (x− 2) + fy(2, 3, 1)(y − 3) + fz(2, 3, 1)(z − 1)

And so

f(1.98, 3.03, 1.01) ≈ 64 + 96 (−0.02) + 48 (0.03)) + 24 (0.01)

= 64− 192

100
+

144

100
+

24

100

= 64− 24

100
= 64− 0.24

= 63.76 ≈ 63.73164351324 . . .

so this approximation is good to the first decimal place, and falls off a bit after that.

Question 4: Suppose f(x, y) is a twice continuously differentiable function with function values measured
in the table below:

y

x
−1 0 1 2 3

−1 11 12 15 14 13

0 13 16 17 18 20

1 20 22 22 19 18

2 27 26 25 22 20

3 32 28 28 27 26

(a) Approximate fx and fy at the point (1, 2).

Solution: We’re going to approximate these using a center difference formula. Suppose we
have a partition of our domain where ∆x and ∆y are uniform across the partition. (If the step
sizes are not uniform then some extra care must be taken.) Then we would define the forwards



difference approximation as

fx ≈
f(xi+1, yj)− f(xi, yj)

∆x

and analogously for fy. The backwards difference approximation would be

fx ≈
f(xi, yj)− f(xi−1, yj)

∆x

and the center difference approximation is

fx ≈
f(xi+1, yj)− f(xi−1, yj)

2∆x

Generally speaking, the center difference approximation will have better convergence properties,
and so we would like to use it whenever possible. For this particular example, notice that
∆x = ∆y = 1 everywhere in the partition. Then our approximation of the x derivative requires
us to look at the two orange entries below (we have colored the point about which we wish to
approximate in blue):

y

x
−1 0 1 2 3

−1 11 12 15 14 13

0 13 16 17 18 20

1 20 22 22 19 18

2 27 26 25 22 20

3 32 28 28 27 26

This gives

fx(1, 2) ≈ f(2, 2)− f(0, 2)

2
=

22− 26

2
= −2

To approximate the partial derivative with respect to y, we apply the same process, except
moving in the y-direction. In the table below, this means we look at the values of the function
in the two orange cells marked below:

y

x
−1 0 1 2 3

−1 11 12 15 14 13

0 13 16 17 18 20

1 20 22 22 19 18

2 27 26 25 22 20

3 32 28 28 27 26

This gives

fy(1, 2) ≈ f(1, 3)− f(1, 1)

2
=

28− 22

2
= 3



(b) Approximate fxy and fxx at the point (1, 2).

Solution: We’re going to apply the same methodology here as we did in the last part, which
is going to require repeating part (a) a few different times. We’ll have

fxx(1, 2) ≈ fx(2, 2)− fx(0, 2)

2

In order to find fx(2, 2) and fx(0, 2) we’re going to need to approximate them the same as we
did in the last part. We have

fx(2, 2) ≈ f(3, 2)− f(1, 2)

2
= −5

2
fx(0, 2) ≈ f(1, 2)− f(−1, 2)

2
= −1

which will give

fxx(1, 2) ≈ fx(2, 2)− fx(0, 2)

2
=

1

2

(
−5

2
− (−1)

)
= −3

4

Similarly, we have

fxy(1, 2) ≈ fx(1, 3)− fx(1, 1)

2

which requires us to compute

fx(1, 3) ≈ f(2, 3)− f(0, 3)

2
= −1

2
fx(1, 1) ≈ f(2, 1)− f(0, 1)

2
= −3

2

giving

fxy(1, 2) ≈ fx(1, 3)− fx(1, 1)

2
=

1

2

(
−1

2
−
(
−3

2

))
=

1

2

(c) Using the table directly, approximate the directional derivative of f at (1, 2) in the direction of the
vector u = 〈1,−1〉.

Solution: We’re going to apply the same method as twice before, except this time we’re going
to move in the direction u, which is along the diagonal :

y

x
−1 0 1 2 3

−1 11 12 15 14 13

0 13 16 17 18 20

1 20 22 22 19 18

2 27 26 25 22 20

3 32 28 28 27 26

Notice that we are increasing x by 1, but decreasing y by 1. Then we have

Dûf(1, 2) ≈ f(2, 1)− f(0, 3)

2
√

2
= − 9

2
√

2

Notice that because we have moved along a diagonal, our distance between the partition points
is not 1, but rather

√
2.



(d) Using the gradient vector, approximate the directional derivative of f at (1, 2) in the direction of
the vector u = 〈1,−1〉. Does your answer agree with the previous part? Explain.

Solution: Because our function is sufficiently smooth, in principle we will have

Dûf(1, 2) = ∇f(1, 2) · û

Using our results from part (a), we have

fx(1, 2) ≈ −2 fy(1, 2) ≈ 3 û =

〈
1√
2
, − 1√

2

〉
Putting all of this together, we find our alternate approximation as

Dûf(1, 2) ≈ (−2) ·
(

1√
2

)
+ (3) ·

(
− 1√

2

)
= − 5√

2

This is pretty close to the approximation we found in the last step! This is to be expected, as
explained above.

Question 5: Consider the ellipsoid x2 + 2y2 + 4z2 + xy + 4yz = 71.

(a) Show that the points on the ellipsoid where the tangent plane is vertical (parallel to the z-axis)
constitute the intersection of the ellipsoid with a certain plane, and find the equation of that plane.

Solution: If we use the methods from section 14.6, we can compute the normal vector to the
ellipsoid. The ellipsoid is the level set of a function F (x, y, z) = x2 + 2y2 + 4z2 + xy + 4yz.
Then normal vector to the tangent plane may be taken to be the gradient of F , giving

n = ∇F = 〈Fx, Fy, Fz〉 = 〈2x+ y, 4y + x+ 4z, 8z + 4y〉

Vertical planes will have normal vectors with no z-component, i.e. n ‖ 〈·, ·, 0〉. Thus, we know
we need

8z + 4y = 0

and that is the plane that we are looking for.

If we haven’t yet read section 14.6, we can still work out the answer, with slightly less precise,
but still relatively convincing, work. In a vertical tangent plane, there will be a vector that
points straight up–this vector will have infinite slope. (Importantly, vectors in non-vertical
tangent planes cannot have this property.) By using implicit differentiation (exactly as we will
do in part (b)), we can show that

∂z

∂x
= −Fx

Fz
and

∂z

∂y
= −Fy

Fz

In order for these to be infinite (i.e. an infinite slope line in a vertical plane), we need the
denominators to be zero, which brings us back to the condition we articulated before.



(b) Consider the point P (1, 2, 3) (check that it is on the ellipsoid!). Since this point is not among those
of part (a), a piece of the ellipsoid containing P is the graph of a function g(x, y). Use implicit
differentiation to compute gx and gy in terms of (x, y, g(x, y)), as well as gx(1, 2) and gy(1, 2).

Solution: First, the partial derivatives of F are given by

Fx = 2x+ y, Fy = 4y + x, Fz = 8z + 4y

Using implicit differentiation, we know we will have

gx = −Fx
Fz

= − 2x+ y

8z + 4y
, gy = −Fy

Fz
= −4y + x+ 4z

8z + 4y

At the point of interest, we know x = 1, y = 2, and z = 3 giving

gx(1, 2) = − 4

32
= −1

8
gy(1, 2) = −21

32



Question 6:

(a) A truncated right circular cone has a height, and two radii (see picture below). The smaller radius
of this cone is decreasing at a constant rate of 1 cm/s, the larger radius is increasing at a constant
rate of 2 cm/s, and the height of the cone is decreasing at a constant rate of 3 cm/s. At what rate
is the volume of the cone changing when the smaller radius is 10 cm, the larger radius is 15 cm,
and the height is 8 cm?

r1

r2

h

Solution: The volume of the truncated cone (more properly called a frustum) is just the
volume of the larger cone minus the volume of the top part of the cone that has been chopped
off. Let the height of the smaller cone be x. Congruent triangles will then give

r1
x+ h

=
r2
x

⇒ x =
r2h

r1 − r2
, x+ h =

r1h

r1 − r2

The volume is then given by

V =
π

3
r21 (x+ h)− π

3
r22h =

πh

3

(
r31 − r32
r1 − r2

)
=
πh

3

(
r21 + r1r2 + r22

)
Using the chain rule, we then have

dV

dt
=
∂V

∂r1
· dr1
dt

+
∂V

∂r2
· dr2
dt

+
∂V

∂h
· dh
dt

=

(
(2r1 + r2)πh

3

)
dr1
dt

+

(
(r1 + 2r2)πh

3

)
dr2
dt

+

(
(r21 + r1r2 + r22)π

3

)
dh

dt

Everything in the above expression is given in the problem statement, so now it is just a matter
of plugging the numbers in. We take r1 = 15, r2 = 10, h = 8, and dr1/dt = 2, dr2/dt = −1,
dh/dt = −3 to find

dV

dt
= −355π

cm3

s

(b) If z = f(x, y), where x = r cos θ and y = r sin θ, show that

∂2z

∂x2
+
∂2z

∂y2
=
∂2z

∂r2
+

1

r2
∂2z

∂θ2
+

1

r

∂z

∂r

Solution: There is no real trick to this problem, just a lot of details–the hardest part is keeping
track of all of the derivatives. Our goal here is to repeatedly apply the chain rule to calculate
the polar derivatives of z in terms of the cartesian derivatives of z.

The first two derivatives work out nicely:

zr = zxxr + zyyr zθ = zxxθ + zyyθ



Naively applying the chain rule again, we find, for example

zrr = zxrxr + zxxrr + zyryr + zyyrr

zθθ = zxθxθ + zxxθθ + zyθyθ + zyyθθ

We can see immediately that we are going to need to find the mixed derivatives zxr, zyr, zxθ,
and zyθ. However, this is also straightforward. Applying the chain rule the exact same way
that we did before, we find

zxr = zxxxr + zxyyr zxθ = zxxxθ + zxyyθ

zyr = zyxxr + zyyyr zyθ = zyxxθ + zyyyθ

At this point, we can continue working with general derivatives, or we can make use of the fact
that we know the derivatives of x and y. Both methods will work, but by using information
about x and y now, we can eliminate some of the terms in our expressions above. Let’s collect
some information:

x = r cos θ y = r sin θ

xr = cos θ yr = sin θ

xθ = −r sin θ yθ = r cos θ

xrr = 0 yrr = 0

xθθ = −r cos θ yθθ = −r sin θ

(We did not collect the mixed derivatives of x and y because they don’t appear in any of our
expressions, but make sure you know how to find them.) Plugging in this information to our
expressions for the derivatives we need, we find the following:

zr = zx cos θ + zy sin θ zθ = −zxr sin θ + zyr cos θ

zxr = zxx cos θ + zxy sin θ zxθ = −zxxr sin θ + zxyr cos θ

zyr = zyx cos θ + zyy sin θ zyθ = −zyxr sin θ + zyyr cos θ

Putting these into our expressions for the second polar derivatives, after simplification, we have

zrr = zxx cos2 θ + zxy cos θ sin θ + zyx cos θ sin θ + zyy sin2 θ

and

1

r2
zθθ = zxx sin2 θ − zxy cos θ sin θ − zx

r
cos θ − zyx cos θ sin θ + zyy cos2 θ − zy

r
sin θ

Combining everything together we now find

zrr = zxx cos2 θ + zxy cos θ sin θ + zyx cos θ sin θ + zyy sin2 θ

+
1

r2
zθθ = zxx sin2 θ − zxy cos θ sin θ − zyx cos θ sin θ + zyy cos2 θ − zx

r
cos θ − zy

r
sin θ

+
1

r
zr = +

zx
r

cos θ +
zy
r

sin θ

= zxx
(
cos2 θ + sin2 θ

)
+ zyy

(
sin2 θ + cos2 θ

)
= zxx + zyy

and we have now established the desired equality.



Extra Credit: In this question let’s explore how much more interesting the notion of continuity and
differentiability can be in higher dimensions. First, let’s look at continuity:

(a) Consider the function f : R2 → R defined on R2\ {(0, 0)} (this notation means all points in the
plane except for the origin):

f(x, y) =
xy

x2 + y2

By letting x = r cos θ and y = r sin θ, describe the level sets of f . Explain why there is no value we
can assign to f(0, 0) that would make this function continuous.

Solution: Converting into polar coordinates we find

f(x, y) =
xy

x2 + y2
=
r2 cos θ sin θ

r2
= sin θ cos θ =

1

2
sin (2θ)

For constant values of θ (i.e. straight lines), this function will approach different values. For
example, when θ = 0, we have the line y = 0, and along this path we see

lim
(x,y)→(0,0)

f(x, 0) = lim
(x,y)→(0,0)

0 = 0

However, when θ = π/4, we have the line y = x, and along this path we see

lim
(x,y)→(0,0)

f(x, x) = lim
(x,y)→(0,0)

1

2
=

1

2

As 0 6= 1/2, it is not possible for us to define a value for f at the origin that will make it
continuous. No matter how close we get to the origin, there is always a point nearby that has
a value of 0 and always another point nearby that has a value of 1/2.

(b) Now consider the function g : R2 → R defined everywhere on R2 by

g(x, y) =


xy√
x2 + y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

Using the same basic trick as in part (a), explain how you know

lim
(x,y)→(0,0)

g(x, y) = 0

Solution: Applying the same basic methodology as before, we have

g(x, y) =
xy√
x2 + y2

=
r2 cos θ sin θ

r
= r cos θ sin θ

Notice, then, that
|g(x, y)| = |r cos θ sin θ| ≤ |r| = r

Next, we note that the origin is the only point in R2 for which r = 0, and so any limit that
sends (x, y) → (0, 0) is covered by a limit that sends r → 0. Then we can use the squeeze
theorem to argue the following:

lim
(x,y)→(0,0)

|g(x, y)| = lim
r→0
|g(x, y)| = lim

r→0
|r cos θ sin θ| ≤ lim

r→0
|r| = lim

r→0
r = 0

We have now shown that as r → 0, |g(x, y)| → 0, which means g(x, y)→ 0. Thus, the limit is
equal to g(0, 0), and this function is continuous.



(c) One last interesting example. Consider the function h : R2 → R defined on R2\ {(0, 0)} by

h(x, y) =
x2y

x4 + y2

Is there a value you can assign to h(0, 0) to make h continuous at the origin? Justify your work.

Solution: There is not!

The cool thing about this question is that every straight line path towards the origin approaches
the same value. Let y = ax, for some value of a. Then

lim
(x,y)→(0,0)

h(x, ax) = lim
x→0

x2 (ax)

x4 + a2x2
= lim
x→0

ax3

x4 + a2x2
= lim
x→0

ax

x2 + a2
= 0

(I will leave it to you to verify that the line x = 0 also approaches this same value.)

However, if we approach the origin not along a straight line, we can get something different.
Suppose y = ax2, for some value of a. Then

lim
(x,y)→(0,0)

h(x, ax2) = lim
x→0

x2
(
ax2
)

x4 + a2x4
= lim
x→0

ax4

x4 + a2x4
= lim
x→0

a

1 + a2
=

a

1 + a2

which is not equal to zero as long as a 6= 0.

Thus, this function is discontinuous at the origin, as the limit is not well-defined.

Now let’s turn to differentiability.

(d) Now consider the function p(x, y) = (xy)
1/3

. Compute px(x, 0) for any x and py(0, y) for any y. In
particular, compute both px and py at (0, 0).

Solution: Away from the lines x = 0 and y = 0, we can compute the partial derivatives in the
standard, shortcut way:

px =
∂

∂x

[
(xy)

1/3
]

=
y1/3

3x2/3
py =

∂

∂y

[
(xy)

1/3
]

=
x1/3

3y2/3

We can see immediately that these formula will fail if x = 0 or if y = 0, and so we are going to
need to resort to some other method. (Technically speaking they will work as long as at least
one of x or y is not zero, and because of the derivatives I asked you to find they will work here,
but this is still a strong hint that we are going to need to try something else.) Specifically, we
are going to use the definition of the partial derivative. We have

px(x, 0) = lim
h→0

f(x+ h, 0)− f(x, 0)

h
= lim
h→0

((x+ h) · 0)
1/3 − (x · 0)

1/3

h
= lim
h→0

0

h
= 0

An entirely analogous calculation will show py(0, y) = 0.

In particular, the same calculation will show that px(0, 0) = py(0, 0) = 0.

(e) Along the positive x-axis, does this function have a tangent plane? What is it? What about along
the positive y-axis?

Solution: In the previous part, notice that we computed px(x, 0) for any x, but we did not
compute py(x, 0). If we go back to the definition and try this, we will find

py(x, 0) = lim
h→0

f(x, h)− f(x, 0)

h
= lim
h→0

(x · h)
1/3 − (x)

1/3

h2/3
= does not exist



This suggests to us that we’re going to have a vertical tangent plane of some kind, which you
can easily visually verify.

If we wanted to show this more concretely, we recognize that z = (xy)
1/3

is the same equation
as z3 = xy. If we define F (x, y, z) = z3 − xy, then our surface is the level set of F = 0, and we
know that ∇F will be the normal vector to the tangent plane. We have

∇F =
〈
y, x, 3z2

〉
Along the positive x-axis, this gives ∇F = 〈0, x, 0〉, which is a vector parallel to the y-axis,
indicating a vertical tangent plane as we guessed. This tangent plane has equation y = 0.

Along the positive y-axis, we’ll have ∇F = 〈y, 0, 0〉, again giving a vertical tangent plane of
x = 0.

Because of the verticality, our method for computing tangent planes from section 14.4 fails:
along these axes, z fails to be a function of x and y. The surface is perfectly nice (with
one exception, discussed below), but our formula for the tangent plane doesn’t apply because
z = f(x, y) fails the vertical line test, even if only at a point.

(f) Does this function have a tangent plane at the origin? Explain.

Solution: It does not. If we try to apply the same level set/gradient method as in the last
part, we find ∇F = 〈0, 0, 0〉, indicating a point of non-regularity. To show that this point
is actually irregular (and this is not just an artifact of our choice of parametrization, to be
discussed again in Chapter 16) is beyond the scope of this course. We can, however, gain some
intuition based on our earlier calculations.

Visually, you can see that there is a corner (or a “pinch”) in the surface at the origin. This
means that we are not going to be able to nicely define a tangent plane at that point. How
does this fact manifest itself in our earlier calculations? Suppose we are on the positive x-axis,
near, but not at, the origin. Then we have a good definition of a tangent plane, given by y = 0.
Similarly, if we are on the positive y-axis, near but not at the origin, we have a good definition
of the tangent plane, given by x = 0. As we transition between these two points, we have no
way to smoothly transition the plane x = 0 into the plane y = 0, because we can be arbitrarily
close to the origin in either case.


